ROLE OF IMMUNOTHERAPY IN CANCER TREATMENT

Mrs. Abijah Princy B.
Reader/Nurse Manager,
Hemato-Oncology Dept.,
Christian Medical College, Vellore
Objectives

- Basics of Human Immune System
- Introduction to Immuno-Oncology
- Historical background & features of Immunotherapy
- Approaches to Cancer Immunotherapy
- Immune related Adverse Events
- Nurse’s role in Cancer Immunotherapy
Introduction

• The principal function of the immune system is to prevent and eradicate pathogens/ infections.

• The immune system has a critical role in controlling cancer through a dynamic relationship with tumour cells

• Attempts to treat different types of cancers by stimulating immune responses to attack cancer cells have been tried for more than a century, but only recently has immunotherapy regained clinical attention, with approvals of multiple agents for the treatment of cancer
1. BASICS OF THE HUMAN IMMUNE SYSTEM
The immune system is a complex network that works together to defend the body against pathogens and cancer cells.

Key Functions

- Monitors tissue homeostasis
- Protects against invading or infectious pathogens
- Removes damaged or malignant cells

Comprises of

- Central, peripheral organs, tissues and cells:
- Lymphatic system, Bone marrow, Spleen, Thymus, Cutaneous / Mucosal elements
Human Immune System

Source: Institute for Quality and Efficiency in Health Care (IQWiG)
Central organ: Bone Marrow

- The white blood cells (WBCs) involved in immunity are produced in the bone marrow.
- Many cells work together as part of the innate (non-specific) and adaptive (specific) immune system.
- Neutrophils are the first responders of the innate immune system. Neutrophils and macrophages circulate throughout the blood to identify and engulf the pathogens.
- The Natural killer cells, T Lymphocytes and B Lymphocytes are part of the adaptive immune system and are effector cells.
- Effector cells are involved in destruction of cancer.
Cells of the immune system

- There are two types of lymphocytes: B lymphocytes (B cells) & T lymphocytes (T cells)
- **B lymphocytes** mature in the bone marrow and then enter the circulation
- Plasma cells produce immunoglobulins (antibodies)
- Memory B cell retains the memory of the earlier antigenic exposure
- The immunity produced by B cells are termed as **Antibody/ Humoral immunity**
Antigen and Antibody

| **ANTIGEN** | • Substance that is able to cause an immune response in the body
| | • Cells in the body, as well as CANCER cells, have antigens that can trigger an immune response
| | • Cancer / Tumor antigens trigger adaptive immunity |
| **ANTIBODY** | • Special proteins created by the WBCs that can kill / weaken the infection causing organism
| | • Each antigen will stimulate production of **one specific antibody** that will fit into its receptor area
| | • When a specific antibody binds to the **antigen on the surface** of a pathogen – it prevents the pathogen from entering the body |
Immunoglobulin/ Antibody

Structure of Immunoglobulin
5 Classes of Immunoglobulins

<table>
<thead>
<tr>
<th>Class of Antibody</th>
<th>Serum levels</th>
<th>Structure</th>
<th>Biological functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgM</td>
<td>5%</td>
<td>Monomer</td>
<td>Membrane-bound immunoglobulin on the surface of immature and mature B cells
First antibody produced in a primary response to an antigen
First antibody produced by the fetus
Efficient in binding antigens with many repeating epitopes, such as viruses
Classical complement activation</td>
</tr>
<tr>
<td>IgD</td>
<td>0.3%</td>
<td>Monomer</td>
<td>Membrane-bound immunoglobulin on the surface of mature B cells
No biological effector function known</td>
</tr>
<tr>
<td>IgA</td>
<td>7-15%</td>
<td>Monomer</td>
<td>Predominant antibody class in secretions (saliva, tears, breast milk) and mucosa
First line of defence against infection by microorganisms</td>
</tr>
<tr>
<td>IgG</td>
<td>85%</td>
<td>Monomer</td>
<td>Most abundant class with four isotypes - IgG1, IgG2, IgG3, IgG4
Crosses the placenta
Opsonization</td>
</tr>
<tr>
<td>IgE</td>
<td>0.02%</td>
<td>Monomer</td>
<td>Defence against parasite infections
Associated with hypersensitivity reactions (allergies)
Found mainly in tissues</td>
</tr>
</tbody>
</table>
T lymphocytes

- T lymphocytes move from the bone marrow to the thymus, where they mature into several kinds of cells with different functions.
- In the thymus – the T cells multiply and acquire different antigen receptors: CD4+ and CD8+ cells.
- They then differentiate into **Helper T Cells** and **Cytotoxic T Cells**.
- The T lymphocytes are regulators of adaptive function, serving as primary effectors for **cell-mediated immunity**.
Lymphoid Tissues

Spleen:
- Red pulp – site for the destruction of the old & injured RBCs.
- The white pulp contains concentrations of lymphocytes.

Lymph nodes:
- Connected by lymph channels and capillaries
- Removes foreign material from the lymph system before it enters the bloodstream. Serves as center for immune cell proliferation.

Mucosal immune cells
- Immune cells that defend the body’s mucosal surfaces against microorganisms
Two types of Immune Response

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Innate Immunity</th>
<th>Adaptive Immunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed of Onset</td>
<td>Rapid first line of defense</td>
<td>Takes time to build an response</td>
</tr>
<tr>
<td>Specificity of Antigen</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Diversity of Response</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Potency</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Memory (Reacts quicker to subsequent exposures)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Example</td>
<td>Skin, hair, mucous membranes, phagocytosis by granulocytes, coughing</td>
<td>T and B lymphocyte response, inflammatory response</td>
</tr>
</tbody>
</table>

Meaning of the parameters:

- **Speed of Onset** - How quick the immune response happens against any pathogen
- **Specificity of Antigen** - The power to identify different pathogenic antigens and destroy them
- **Diversity of Response** - The wider immune response possibilities
- **Potency** - The Strength of the response and durability / duration of immune response
- **Memory** - The ability to respond to a pathogen during subsequent or repeated exposures
Antigen Presenting Cell (APC)

Commonly found APCs like macrophages and dendritic cells, detect pathogens, cancer cells, and other antigens.

Pathogenic ANTIGEN

The APC then gets in contact with the pathogenic antigen.

The antigen is ingested by the APC by a process called "Phagocytosis".

The ingested antigen is then degraded (broken down) inside the APC.

One of the fragments (peptide) from the broken down antigen is then "displayed" on the surface of the APC – by help of an “arm” or “Platform” called Major Histocompatibility Complex (MHC). This helps the circulating T cells to identify the antigen and initiate adaptive immune response by activation of the T cell.

Graphic adaptation (Bristol Myers Squibb India Copyright)
2. INTRODUCTION TO IMMUNO-ONCOLOGY
Definitions

• **Immuno-Oncology therapy** is a unique approach that uses the body’s immune system to help fight cancer

• **Immunotherapy** is defined as the approach to treat cancer by generating or augmenting an immune response against it

• **Immune modulation** is based on stimulation of T-cell function with antibodies that block or activate regulatory receptors to suppress the tumor growth
CANCER AND THE IMMUNE SYSTEM: A DYNAMIC RELATIONSHIP

Immunoediting Process

The immune system regulates tumour growth through a dynamic process, in which it can either block tumour growth, development and survival or may promote tumour progression.

Stages:
- Elimination
- Equilibrium
- Escape
Elimination phase

Cancer cells are identified and destroyed long before they become clinically apparent (i.e., immune protection) and the host remains free of cancer.

Equilibrium phase

If a cancer cell variant is not destroyed, the cancer cells persist but outgrowth is prevented by the immune system. This stage lasts for many years or even the lifetime of the host.

Escape phase

Outgrowth of cancer cells is no longer controlled by the immune system, leading to clinically apparent and progressive disease (immune evasion).
CANCER IMMUNOEDITING PROCESS
3. HISTORY & FEATURES OF IMMUNOTHERAPY
Cancer treatment landscape

Immuno-Oncology / Cancer immunotherapy is an emerging treatment modality that aims to work with the body’s immune system to fight cancer
Definition

Immunotherapy refers to any treatment that boosts or restores the ability of the immune system to fight cancer, infections and other diseases

-National Cancer Institute
Breakthrough in Cancer Immunotherapy

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1890s</td>
<td>Coley's first cancer vaccine (bacterial toxin)</td>
</tr>
<tr>
<td>1909</td>
<td>Hypothesis on cancer immuno-surveillance</td>
</tr>
<tr>
<td>1959</td>
<td>BCG approved for cancer therapy</td>
</tr>
<tr>
<td>1985</td>
<td>Adoptive cell transfer for cancer</td>
</tr>
<tr>
<td>1992</td>
<td>IL-2 approved for renal cell cancer</td>
</tr>
<tr>
<td>1997</td>
<td>First monoclonal antibody Rituximab</td>
</tr>
<tr>
<td>2001</td>
<td>Concept of 'Immuno editing'</td>
</tr>
<tr>
<td>2011</td>
<td>First approved cancer vaccine Sipuleucel-T for prostate cancer</td>
</tr>
<tr>
<td>2010</td>
<td>CAR T cell therapy response (92%)</td>
</tr>
<tr>
<td>2014</td>
<td>Anti-PD-1 Nivolumab for Lung cancer</td>
</tr>
<tr>
<td>2015</td>
<td>FDA approves multiple immunotherapeutic drugs</td>
</tr>
<tr>
<td>2020</td>
<td></td>
</tr>
</tbody>
</table>
Features of Immunotherapy

- Immunotherapy targets the cancer cells sparing the normal cells

Immunotherapy is a preferred treatment for cancer due to:

1. Specificity
2. Long-lived
3. Adaptable
4. Memory
Features of Immunotherapy

It can precisely attack tumor cells, potentially throughout the body (with a few exceptions), thus minimizing damage to surrounding tissue.
Features of Immunotherapy

Immunotherapy is a preferred treatment for cancer due to:

1. Specificity
2. Long-lived
3. Adaptable
4. Memory

Activity continues until all cells bearing the abnormal antigen (Tumor cells) are destroyed.
Features of Immunotherapy

Immunotherapy is a preferred treatment for cancer due to:

1. Specificity
2. Long-lived
3. Adaptable
4. Memory

It may be effective in different types of cancer, regardless of specific tumor characteristics; can adjust the size and type of its response.
Features of Immunotherapy

Immunotherapy is a preferred treatment for cancer due to:

1. Specificity
2. Long-lived
3. Adaptable
4. Memory

It remembers antigens and mounts a faster and stronger response on repeated exposure to them, theoretically protecting from tumor recurrence.
4. APPROACHES TO CANCER IMMUNOTHERAPY
Approaches to cancer immunotherapy

- Monoclonal antibodies
- Adjuvant immuno-therapy
- Cytokines
- Adoptive T cell transfer
- Therapeutic cancer vaccines
- Oncolytic virus Immuno-therapy
- Checkpoint inhibitors/ Immune modulators
IMMUNOTHERAPY: MECHANISM OF ACTION

1. Activation of effector immune cells
 - Vaccines

2. Stimulatory strategies
 - Adoptive cellular therapy
 - Oncolytic virus

3. Strategies to neutralize immunosuppressor mechanisms
 - Monoclonal antibodies
 - Immune check point inhibitors
1. MONOCLONAL ANTIBODIES

Monoclonal antibodies work in cancer via several different mechanisms of action, which generally involve binding to a specific target antigen and thereby inducing cell death.

Some of the mechanisms include:

- **Blocking the signalling** pathways needed for tumour cell growth
- **Triggering an immune-mediated cytotoxic response** (e.g. antigen-dependent cellular cytotoxicity)
- **Blocking angiogenesis**
Common Monoclonal antibodies

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Brand Name</th>
<th>Target</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab</td>
<td>Rituxan</td>
<td>CD20</td>
<td>Relapsed or refractory, low-grade or follicular, CD20⁺ NHL</td>
</tr>
<tr>
<td>Tositumomab and I-131 tositumomab</td>
<td>Bexxar</td>
<td>CD20</td>
<td>Refractory to rituximab, relapsed, CD20⁺ follicular NHL</td>
</tr>
<tr>
<td>(90)Y-ibritumomab tiuxetan</td>
<td>Zevalin</td>
<td>CD20</td>
<td>Relapsed or refractory, low-grade, or transformed B-cell lymphoma</td>
</tr>
<tr>
<td>Alemtuzumab</td>
<td>Campath-1H</td>
<td>CD52</td>
<td>Salvage B-cell CLL</td>
</tr>
<tr>
<td>Gemtuzumab ozogamicin</td>
<td>Mylotarg</td>
<td>CD33</td>
<td>Relapsed acute myeloid leukemia</td>
</tr>
<tr>
<td>Trastuzumab</td>
<td>Herceptin</td>
<td>HER-2/neu</td>
<td>HER-2⁺ metastatic breast cancer</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>Avastin</td>
<td>VEGF</td>
<td>Metastatic colorectal cancer, frontline with 5-FU</td>
</tr>
<tr>
<td>Cetuximab</td>
<td>Erbitux</td>
<td>EGFR</td>
<td>Second line for metastatic colorectal cancer in combination with irinotecan</td>
</tr>
</tbody>
</table>
2. CYTOKINES

- Cytokines are **protein molecules** that help **regulate and direct the immune system**. Cells release cytokines, which act as **messengers** to other cells, telling them when and where to launch an immune response.
- Various types of cytokines are naturally produced by the body.
- In cancer treatment, cytokines are synthesized in the lab and injected in larger doses than the body would normally produce.
• **Interleukin 2 (IL-2)** is designed to target adaptive immune cells, such as T-cells and B-cells, to respond to tumors. IL-2 may help the body produce antigen-fighting T-cells and stimulate B-cells to produce more antibodies.

• Side effects: Weight gain, low blood pressure, flu-like symptoms.

• **Interferon-alpha (IFN-alpha)** helps the body generate innate immune cells, such as dendritic cells and macrophages, that are designed to attack unhealthy cells. Side effects: Flu-like symptoms, an increased risk of infection, rashes, and thinning hair.
Cytokines-Mechanism of action
• Renal cell carcinoma (IL-2, IFN-alpha)
• Melanoma (IL-2, IFN-alpha)
• Hairy cell leukemia (IFN-alpha)
• Follicular non-Hodgkin’s lymphoma (IFN-alpha)
• Cutaneous (skin) T cell lymphoma (IFN-alpha)
• Chronic myelogenous leukemia (IFN-alpha)
• Kaposi’s sarcoma (IFN-alpha)
An important function of the immune system is its ability to recognize between normal cells and “foreign” (self and non-self).

This mechanism destroys the foreign cells while sparing the normal cells.

Immune checkpoints are molecules on certain immune cells that need to be activated (or inactivated) to start an immune response.

Cancer cells sometimes find ways to use these checkpoints to avoid being attacked by the immune system.
Checkpoints & their actions

- There are different types of checkpoint proteins present on the T cell. Broadly they have two actions (a) **Activation** or (b) **Inhibitory**
- Any signal through the *inhibitory receptors* of the T cell → Inhibits the T cell and thus the T cell will **NOT ATTACK** that particular cell (eg. cancer cell)
- Similarly, any signal through the *activating receptors* of T cell → activates the T Cell and thus the T cell **WILL ATTACK** that particular cell (eg. cancer cell)

Different types of Checkpoints and their actions

• Currently the **important Inhibitory receptors are**:
 • **PD-1** (Programmed Cell Death Protein 1) and
 • **CTLA4** (Cytotoxic T Lymphocyte Antigen 4)

- The **PD1** receptors bind with **PDL1** ligand on APC / Tumor cell
- **CTLA4** receptors bind with **B7** ligand on APC / Tumor cell

• Once they bind, they **INHIBIT the T Cell from acting** against the cancer / tumor cell
• Thereby leading to growth of the cancer cells

PD1-PDL1 Checkpoint

- When PD-1 (in T cell) binds with PD-L1 receptor in the tumor cell → It basically inhibits (NOT TO ATTACK) the T cell; so ultimately the tumor cell is not attacked by the T cell
- Some cancer cells have large amounts of PD-L1, which helps the tumor cells HIDE from an immune surveillance
CTLA4 Checkpoint

- CTLA4 is another checkpoint
- When CTLA4 (on the T cell) binds to the B7 ligand on the APC or Tumor cell → It basically tells the T cells NOT TO ATTACK the tumor cells
- Hence the cancer cells begin to grow and increase inside the body and cancer spreads
Checkpoint INHIBITORS

- Monoclonal antibodies block this binding (PD1 - PDL1) (CTLA4 – CD 80 / 86) and boost the immune response against cancer cells.
Checkpoint Inhibitor drugs currently approved for use in India

<table>
<thead>
<tr>
<th>Class of Checkpoint Inhibitors</th>
<th>Molecule name</th>
<th>Brand Name (India)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti PD-1</td>
<td>Nivolumab</td>
<td>Opdyta®</td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab</td>
<td>Keytruda®</td>
</tr>
<tr>
<td>Anti PD-L1</td>
<td>Atezolizumab</td>
<td>Tecentriq®</td>
</tr>
<tr>
<td></td>
<td>Durvalumab</td>
<td>Imfinizi®</td>
</tr>
<tr>
<td>Anti CTLA4</td>
<td>Ipilimumab</td>
<td>Yervoi®</td>
</tr>
</tbody>
</table>
4. THERAPEUTIC CANCER VACCINES

- **Primary goal**: is not to prevent disease but to **target the immune system** to help **initiate or enhance** an active immune response (activate the immune system with **targeted T cells** to seek out and destroy target cancer cells) against an existing cancer.

- Proven to improve overall survival in patients with **prostate cancer (Sipuleucel-T)**

- **Cancer prevention**: **HPV vaccines** (Gardasil® & Cevarix®)
Dendritic cell based vaccines
Viruses can be engineered to efficiently infect cancer cells preferentially over normal cells, to promote presentation of tumor-associated antigens, to activate "danger signals" that promote a less immune-tolerant tumor microenvironment, and to serve as transduction vehicles for expression of immune modulatory cytokines.
ONCO LYTIC VIRUS THERAPY

1. Cells are removed from patient.

2. In the laboratory, a virus is altered so that it cannot reproduce.

3. A gene is inserted into the virus.

4. The altered virus is mixed with cells from the patient.

5. The cells from the patient become genetically altered.

6. The altered cells are injected into the patient.

7. The genetically altered cells produce the desired protein or hormone.
6. ADOPTIVE T CELL TRANSFER

Broadly refers to the practice of manipulating patient-specific T cells ex vivo to make them more reactive to specific antigens.

Chimeric antigen receptors:

- (CAR) T cells are genetically modified T cells.
- Patient's own T cells are manipulated ex vivo to express the antigen-binding domain from a B cell receptor that is fused to the intracellular domain of a CD3 T cell receptor (CD3-zeta).
- As a result, recognition of a specific cell surface antigen activates T cell response independently of MHC recognition.
- Various modifications can enhance CAR effector function, such as co-expression of intracellular costimulatory domains such as CD28 or 4-1BB (CD137) or pro-effector cytokines such as IL-12.
CAR T-CELL PROCESS

LEUKAPHERESIS
Collect patient’s white blood cells

MANUFACTURING PROCESS
- Isolate and activate T cells
- Engineer T cells with CAR gene
- Grow and expand number of T cells

INFUSION
Infuse same patient with engineered T cells
7. ADJUVANT IMMUNOTHERAPY

- Adjuvant immunotherapies are substances that are either used alone or combined with other immunotherapies to boost the immune response even more.
- Adjuvant immunotherapies can improve responses to therapeutic cancer vaccines that require the work of T cells or other immune cells.
- Some adjuvant immunotherapies use ligands—molecules that can bind to protein receptors—to boost immune responses.
- Eg. Bacillus Calmette-Guérin (Bladder cancer)
- **GM-CSF + Vaccines** ➔ prostrate & pancreatic cancer
The combination of different treatment methods holds significant potential to improve treatment outcomes.

- **Chemoimmunotherapy** - synergistic effect (chemo + CTLA-4 blockade agents)
- **Radiation +Immunotherapy** - potentiates the systemic efficacy of immunotherapy & enhances the local efficacy of radiation therapy
- **Hormonal therapy + Immunotherapy** - androgen ablation
5. IMMUNE RELATED ADVERSE EVENTS (irAE)
Adverse Effects of Immunotherapy

Mild flu like symptoms to inflammation of organs, autoimmune disorders and hypersensitivity reactions/ anaphylaxis

<table>
<thead>
<tr>
<th>Body System</th>
<th>Toxicities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermatologic</td>
<td>Drug reaction with eosinophilia and systemic symptoms, Maculopapular rash, Psoriasis, Vitiligo</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Celiac disease, Enterocolitis, Gastritis, Pancreatitis</td>
</tr>
<tr>
<td>Endocrine</td>
<td>Adrenal insufficiency, Diabetes, Hypo/hyperthyroidism, Hypophysis</td>
</tr>
<tr>
<td>Renal</td>
<td>Granulomatous interstitial nephritis, Lupus-like GN</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>Cardiomyopathy, Myocarditis, Pericarditis</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>Pleural effusion, Pneumonitis, Sarcoidosis</td>
</tr>
<tr>
<td>Nervous System</td>
<td>Aseptic meningitis, Encephalophagy, GBS, Myasthenia,Myelitis, Peripheral neuropathy</td>
</tr>
<tr>
<td>Hematologic</td>
<td>Hemolytic anemia, Thrombocytopenia, Neutropenia, Pancytopenia</td>
</tr>
</tbody>
</table>
Immune related adverse events

Respiratory Tract
Signs and symptoms such as
• Dyspnea
• Cough

Liver
Signs such as
• Increased hepatic values (eg, AST, ALT or total bilirubin)

Gastrointestinal Tract
Signs and symptoms such as
• Diarrhea
• Stomach pain
• Blood in stool

Endocrine System
Signs and symptoms such as
• Psychological changes/mood swings
• Significant results for thyroid function tests and/or serum chemistry

Kidneys
Symptoms such as
• Blood in urine
• Increased serum creatinine
• Decreased urine output

Skin
Symptoms such as
• Itching
• Rash

< 1%: pancreatitis, uveitis, demyelination, autoimmune neuropathy (including facial nerve and abducens paralysis), Guillain-Barré-Syndrome, hypopituitarism and myasthenia syndrome.
Considerations when managing immune-mediated adverse events

- Early recognition of potential irAE
- Close monitoring of signs/symptoms
- Use of corticosteroids, withholding, or discontinuing therapy

While some side effects of immunotherapy may appear similar to chemotherapy, they may need to be managed differently.
6. NURSES ROLE IN IMMUNOTHERAPY
SAFE PREPARATION OF IMMUNOTHERAPY

• Prior to reconstitution of cytotoxic drugs ensure if the patient’s blood counts, electrolyte, liver and renal function test values are within normal limits.
• The order for the drug has to be verified with the protocol.
• The drug, diluents and the necessary disposable items should be placed in the bio-safety cabinet.
• After wearing the protective devices, reconstitute and dilute the drug following strict aseptic techniques.
• It is essential to label all the prepared bottles which are then to be counter signed by the second person.
• All potentially contaminated items (except sharps) are to be placed in the disposable cover as per the institutional protocol.
SAFE ADMINISTRATION OF IMMUNOTHERAPY

- The procedure has to be explained to the patient.
- The hand hygiene policy of the hospital is to be adhered to.
- The identity of the patient is to be ensured by checking the name band of the patient and asking the patient to state his/her name.
- The patency of the vein for blood return is to be assessed using water for injection, sodium chloride or heparin saline. The drug is administered only when it is possible to aspirate and infuse fluid freely without pain or swelling.
- Drugs that have to be administered as continuous infusion are to be infused using an infusion pump.
• The patient is to be advised to alert nursing staff in case of any stinging, pain or discomfort.
• Patients have to be observed for signs of anaphylaxis or any other adverse reaction.
• On completion of the infusion, the IV line is to be flushed with a compatible solution.
• The contaminated bottle and intravenous tubings are to be disposed as per protocol.
• Hands have to be washed thoroughly after administration of drugs.
• The procedure has to be documented in the nurses record and should include:
 Pre-medication, sequence of drug administration, name of the drug dosage, route, diluent in which the drug is added, IV fluids infused and the rate of infusion, patient tolerance, any allergic reactions and educational interventions.
Client and Family Teaching

- Minimize symptoms by managing fever and flulike symptoms: increase fluid intake, take analgesic and antipyretic medications and maintain bed rest until symptoms abate.
- Seek help for serious problems - dehydration from diarrhea/ hyper sensitivity
- Care for vascular access device /ambulatory pumps
SUMMARY

- Thorough knowledge on immunotherapy
- Informed consent/Check baseline investigations
- Emergency kit / crash cart
- Monitoring the patient(checklist)
- Verification of order by senior physician
- Drug calculation and administration verification by a second registered nurse
• Pre medication
• Test dose
• Aseptic preparation & administration
• Disposal & documentation
• Prompt assessment and management of side effects/complications
• Initiation of steroids
• Patient education
• Immunotherapy is an established treatment method for multiple oncological diseases, spanning numerous solid tumours and haematological malignancies.

• The future of additional immunotherapeutic approaches is highly promising, as numerous cancer immunotherapies are currently in advanced phases of clinical development.

• Nurses have a challenging role to play in caring for patients with cancer immunotherapy
• Abbas et al. Cellular and Molecular Immunology. 6th ed. Philadelphia, PA: Elsevier Saunders; 2010
• Finn. Ann Oncol. 2012;23(suppl 8):viii6–viii9
• Institute for Quality and Efficiency in Health Care (IQWiG).
• Link: https://www.healio.com/hematology-oncology/learn-immuno-oncology/the-immune-system/components-of-the-immune-system (Accessed 28/05/2020)
• Presented by Mary Disis at 2018 ASCO-SITC Clinical Immuno Oncology Symposium
• Image link: http://leavingbio.net/human-defence-system/ (Accessed 29/05/2020)
• Link: https://wiki.ecdc.europa.eu/fem/Pages/Antigen%20presenting%20cells%20(APC).aspx (Accessed 01/06/2020)
• Image: https://www.researchgate.net/publication/51100169_Educational_paper_Primary_antibody_deficiencies/figures?lo=1
• https://www.researchgate.net/publication/5247192_B_cells_From_the_bench_to_the_clinical_practice/figu
• Image: https://www.researchgate.net/publication/5247192_B_cells_From_the_bench_to_the_clinical_practice/figu